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A PLATE REINFORCED WITH STIFFENERS'[" 
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The problem of the equilibrium of a non-linear plate reinforced with stiffeners is considered. The idea of a generalized solution 
of the problem as a critical point of the energy functional of an elastic system is introduced and the existence of a generalized 
solution of the problem is proved. The convergence of Ritz' method within the framework of this problem and also of the conformal 
versions of the finite-element method, constructed on the basis of Ritz' method, is validated. Similar problems were discussed 
in [1-3].~ 1999 Elsevier Science Ltd. All rights reserved. 

Consider the formulation of the problem of the equilibrium of a loaded plate, reinforced with stiffeners. 
The plate is described by the following non-linear constitutive relations 

Eh Eh Eh 
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where E, ~t and D are the elasticity constants, while the subscripts x and y denote differentiation with 
respect to the corresponding variable. The equilibrium equations of the plate have the form 

DV4u3 - N I lu3xx - N22u3yy - 2Nl2u3xy - 123 = 0 

V2Ul 4- l + I,t (ul~ + u2x) x + i 2 (U3xU3xx 4- ~l, U3yU3xy ) -I- U3yU3xy + u3xig3yy 4- F I -- 0 
l - ~ t  " 

V2U2 + ]+_~_~(U I +U2x ) 2 1 - IJ. Y Y 4- ~ (U3yg3yy + ~'l'u3xU3xy ) + U3xU3xy + U3yU3xx + F2 = 0 

where Fi are the components of the external load vector. 
We will assume that the closed region f~, occupied by the plate, is bounded and has a piecewise-smooth 

boundary (all the angles at the corner points of the boundary are non-zero). The plate is reinforced 
with a finite number n of rectilinear stiffeners. The stiffeners are described using the classical theory 
of rods. 

Depending on the ratio of the stiffness of the stiffeners to that  of the plate itself we can consider different versions 
of the equat ions  describing the stiffeners. I f  the stiffness of the stiffeners is comparat ively high, it  make  sense to 
use  l inear  equat ions to describe these stiffeners. If  the stiffeners are not  too stiff, we must take non-l inear  relations. 
The side flexure of  the stiffeners can often be  neglected,  but  this is not  done here.  

We will consider the linear rod version of the model of a stiffener. To describe the rod we choose a 
rectangular system of coordinates (s, ~1, ~2), where the coordinate lines (~1, g2) pass along the principal 
central axes of the rod section, and s is a natural parameter of the length of the neutral axis of the rod. 

The displacement of a point on the neutral axis of the rod in projections onto the coordinate lines 
(s, ~1, ~2) is denoted by (u, wl, w2). The main characteristics of the deformation of the stiffener are 
specified as follows. The angle of rotation of the transverse cross-section of the rod around the ~i axis 
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is cPi = dwi/ds. Suppose tp is the angle of rotation of the transverse cross-section around the s axis and 
the angle of relative torsion of the cross-section is~ = &p/ds. We will also introduce the axial strain a = 
du/ds and the curvatures ~i = --dtPi/ds = --d2wi/dS (i = 1, 2). These characteristics of the deformation 
are related to the longitudinal force N, the torsional moment M and the bending moments M1 and M2 
by the relations 

T = BE, M = D~X, M I = Dr× I, M2 = D2x2 

where B, D v D 1, D2 are the stiffnesses of the rod, expressed in terms of the physical constants of the 
material and the geometrical parameters of the rod. The equilibrium equations of such a rod are well 
known and will not be given here (see, for example, [4]). 

For a complete formulation of the problem we must state the conditions for the deformation of the 
plate and of the stiffeners to be compatible. These equations will not be specified in detail here. It should 
be noted that the set of quantities (u, wl, w2, ~p) for the rod is expressed in terms of the displacement 
vector of the corresponding point of the plate (Ul, u2, u3) and its derivatives by the linear relations (see 
[4]) 

u = u(ul,u2,u3), wl = wl(ul,u2,u3), wz = w2(ul,u2,u3) 

q~ = q)(u~, u2, u3) (2) 

Henceforth all the deformation characteristics of the stiffener are assumed to be expressed in terms 
of the corresponding components of the displacement vector of the plate by relations (2). 

Each of the n stiffeners, denoted by Rv (v = 1 . . . . .  n), may have different physical characteristics. 
The subscript v will be dropped in the notation for the parameters of the vth stiffener. 

To formulate the equilibrium problem we need to specify the boundary conditions. It is required that, 
along the normal to the middle plane of the direction, the plate is clamped at three points (xi, Yi) which 
do not lie on a single straight line 

u3(xi, Yi) = 0, i = 1, 2, 3 (3) 

We can also assume that there is a part of the boundary of the region F1 where the following condition 
is satisfied 

u 3 It1 = 0 (4) 

and a part F2 where the following condition is satisfied 

3U 3 IOn It2 = 0 (5) 

The set of functions belonging to C(4)(fl) and which satisfy conditions (3)-(5) will be denoted by C4. 
For the tangential displacements v = (ul, u2), we shall require that boundary conditions are satisfied 

such that the Korn inequality holds for the planar theory of elasticity 

I ( u2 +u2 +u2x +u21y +u2x +u~y)dxdy<_mJ {u 2 +(UlyaCU2x) 2 +u~x}dxdy 

One of the possible versions where this inequality is satisfied with constant m, which is independent of 
v, is the condition 

u I Ira = 0,  u 2 Ira = 0 ( 6 )  

w h e r e  1" 3 is a certain part of the boundary contour 0fl of the region. 
We will introduce the set C2 of vector functions v = (ul, u2), each component of which belongs to 

the space C(2)(fl) and such that condition (6) is satisfied. 

We can also assume that other parts of the boundary of the region are rigidly clamped (then the corresponding 
conditions must be included in the definition of the sets Ca or C2), or there is elastic support (the corresponding 
elastic support energy must be included in the total energy functional), or there are specified external loads. In 
the last case, the energy functional includes an integral term (the integral along the boundary of the region), equal 
to the work of the external forces on the boundary. These conditions will not be written down in differential form, 
since they are well known and can be obtained by standard methods from the variational formulation of the problem. 
To fix our ideas we will assume that conditions (3)-(6) are satisfied. 
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Consider a plate under a normal load (F1 = F2 = 0). As we knowfrom the general theory, the solution 
of the problem of the deformation of a plate reinforced with stiffeners, on a set of vector functions 
satisfying the geometrical conditions of the clamping of the edge, is obtained as a vector function u, 
satisfying the plate edge clamping conditions and minimizing the total energy functional, in which all 
the terms are expressed in terms of the displacement vector of the middle plane of the plate 

l(u)=llu3 1142 + l J  (Nlle, l +N22E22 +NI2£12)dxdy+Z-J F3u3dxdy - J f3u3 ds (7) 

",3 "b i j 2 n (Mjlx]J + M22x22 + Mmxj2)dfZ 

v=l 2 Rv 

where f3 is the normal load specified on the edge of the plate. The last two integrals on the right-hand 
side of the first equation of (7) describe the work of the external forces in the displacement u3. The 
expressions under the summation sign describe the contribution to the potential energy function Ii(u) 
for a plate without stiffeners solely in the quantity E. It should be noted that the integrated in the integrals 
under the summation sign is a positive-definite quadratic form of the variables e, Z, ×1, ×2 (here it is 
assumed that the displacement variables of points of the rod are expressed in terms of the coordinates 
of the plate displacement vector by means of formulae (2)). 

The complete equations of equilibrium in displacements for a plate with stiffeners and the natural 
boundary conditions are obtained in the usual way for the variational technique by processing the 
equation ~I(u) = 0, where 5I(u) is the first variation of the functional I(u). 

For the classical formulation of this problem the conditions formulated along the reinforcing lines 
of the stiffeners in the f) plane, become part of the boundary conditions. They are natural boundary 
conditions which describe the common deformation of the stiffener and the plate. A curious feature 
of these "boundary" conditions is the fact that the highest order of the differentiation in the boundary 
conditions is four, which is equal to the order of the highest derivative of u3. This non-classical 
combination of the order of the derivatives in the equations and boundary conditions nevertheless does 
not imply that the mathematical scheme used to investigate the general solvability of the problem will 
be troublesome. 

For the mathematical formulation of the problem, we will introduce a functional energy space in 
which the solution will be found. The energy norm in this space includes all positive quadratic terms 
of the complete energy functional. We will first introduce auxiliary functional spaces. The space E 4 is 
the closure of the functions u(x, y) e C4 in the energy norm 11 • 114, which is associated with the scalar 
product 

= 2 n [Mll(u)x11(V ) + M22 (u)x22 (")+ Mi2(u)x,2 (v)]d~, II u 114= (u, u)~ 

The space E 2 is the closure of the vector functions v(x, y) e C2 in the energy norm 11 • 112, induced by 
the scalar product 

(Vl,V2)2 = / j [Nell(Vl)ell(v2) + Ne22(vl)e22(v2)+ Nel2(vl)el2(v2)]d~ 
2ta 

where 

Eh Eh Eh 
Nel l=l-~(el l+l . te22) ,  Ne22=l_l.t""~(e22+llell), Nel2=l- '~e l2  

eli =glx, e22 =U2y, el2 =Uly+g2x 

For the variables M l l  . . . . .  el2 in parentheses we indicate the arguments u, u or v, which must be 
substituted into relations (1). 

We introduce two norms into the set C2 x C4 by the equations 

+li, ,L +z 
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The scalar products corresponding to these norms are obtained by a method that is standard for Hilbert 
spaces. The closures of the set C2 × Ca in these norms are Hilbert spaces, and they are denoted by E0 
and El, respectively. 

It is obvious that the elements of the space E1 will be elements of the space E0. We know [1, 2] that 
the space E0 is a subspace of the Cartesian product of the Sobolev spaces W = wtl)(~) x Wl(1)(f~) x 
w2(2)(f2) [5], the norm of which is equivalent to the norm II • II0 introduced above. Further, we use the 
corresponding Sobolev imbedding theorems [5] in the space W (and, consequently, also in E0). The 
space El has, in a certain sense, "smoother" elements than the space E0, since, on sections of the straight 
lines Rv the vector functions from E~ have a greater degree of smoothness than follows from the theorems 
of imbedding in E0. It should be noted that the component u3(x, y)  of an arbitrary element from E0, by 
virtue of Sobolev's imbedding theorem, is a continuous function, so the clamping condition (3) therefore 
also has meaning in the spaces E0 and El. 

Definition. The stationary point of the energy functional I(u) in the space E1 is called the generalized 
solution u of the plate equilibrium problem. 

Thus, the generalized solution satisfies the equation 5I(u) -- 0. As we know, this equation is the basis 
of the solution of this problem by the Bubnov--Galerkin method and, consequently, by the finite-element 
method also. 

To correct the generalized formulation of the problem we need to impose limitations on the external 
loads. The terms of the functional I(u) corresponding to the work of the external forces must have 
meaning for any vector functions u ~ El. The class of such loads F3 and f3 will be denoted by E*. 
By virtue of the imbedding theorems, the sufficient conditions for a load to belong to the class E* are 
F 3 ~ L(f~),f3 e L(t3~2). 

The energy functional I(u) has the same structure as the energy functional for the plate 

/ (u )  =11 u II 2 +W(u)  

where T(u) is a weakly continuous functional in the space E~. Moreover, the functional T(u) is identical 
with the corresponding functional for the plate It follows from the general theory (see also [1, 2]) that 
to prove the generalized solvability of the problem it is sufficient to show that the functional I(u) is an 
increasing functional, i.e. I(u) ~ oo if l[ u I11 ~ oo. 

L e m m a .  Suppose the load belongs to the class E*. Then functional l(u) is an increasing functional. 
This is proved using the same scheme as for the plate. Namely, we show that it follows from the 

inequality I(u) ~< m that a constant M < oo exists such that II u II1 ~< M. 
Thus, suppose I(u) ~< m. Since the inequality 

~ F3u3dxdy + ~fl f3u3d ~ <_ c II u 3 I14 

is satisfied with a certain constant c, which is independent of u3, it follows directly from the inequality 
I(u) ~< m that II u3114 ~< ml. However, it follows directly from the inequality I(u) ~< m that Z ~< m2, and 
then also that [] v 112 ~< m3, v = (Ul, U2), where m i are certain constants. 

The following theorem follows directly from the above lemma and from the general theory and the 
method described previously in [1-3]. 

Theorem. Suppose the plate is acted upon by a normal load of class E*. In this case: 
1. there is at least one generalized solution of the problem of the equilibrium of a shell belonging to 

the space E4, which makes the energy functional/(u) a minimum; 
2. any minimizing functional I(u) of the sequence un contains a subsequence, which converges strongly 

in the space E 4 to the generalized solution of the problem; 
3. the system of equations of the approximate solution of the problem by Ritz' method and (thereby 

by the Bubnov-Galerkin method and, consequently, by any conformal version of the finite-element 
method) is solvable at each step and contains a subsequence which strongly converges to the generalized 
solution of the problem in E4; moreover, any weakly converging subsequence of the approximations 
converges strongly to a certain generalized solution of the problem. 

The solution of this non-linear problem is, in general, non-unique. 
To investigate this problem we will use a topological approach, employed previously in [1-3] in the 
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theory of shallow shells. Using this approach, in the condition of the problem, we can introduce loads 
which act parallel to the middle plane of the plate. Here, during the course of the proofs, additional 
limitations on the method of clamping the edge of the plate in directions parallel to the middle plane 
arise (for more detail see [2]). 

Finally, we note that, when solving the problem by the finite-element method, an algebraic system 
of equations is obtained in which the equations containing the junction points on the stiffeners have a 
form which differs from the form of the equations for the junction points outside the stiffeners, but 
the structure of the equations themselves remains essentially unchanged. 
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